Advancing Analytics Governance to Achieve Organizational Success

Reading time: 4 minutes

Information-driven decision-making in today’s fast-paced business environment has become paramount for organizations seeking a competitive edge. However, the ever-increasing volume and complexity of data and analytics within an organization pose significant challenges to ensuring effective decision-making processes. A critical component of accessing the right information at the right time in a fast-paced business environment is an analytics catalog coupled with analytics governance to harness the true potential of an organization’s analytic assets (e.g, , reports, dashboards, visualizations, etc). ZenOptics’ Analytics Hub software platform is purpose-built to establish a unified view and catalog of an organization’s enterprise analytic assets and to enable a streamlined analytics governance process to facilitate decision making. In this blog post, we will explore the imperative of analytics governance and how ZenOptics software facilitates data-driven decision making through effective governance practices.

The Power of Analytics Governance

Analytics governance unlocks the transformative power of information while fostering operational efficiencies and reducing organizational risk. By implementing robust governance policies, processes, and controls across the entire analytics pipeline – from quality and accuracy of data to the discoverability and accessibility of the reports – the accuracy, consistency, and security of analytics assets, analyses and initiatives are well supported and trusted throughout decision-making processes. With a unified approach to governance, risks are mitigated, trust is built in data-driven insights, and value is derived and maximized from analytics investments. In addition, misinformation, redundancies of effort and associated costs are reduced or eliminated, thereby improving financial and operational success.

Navigating Governance Challenges

Analytics governance is not without its challenges, particularly given the complex nature of legacy BI and self-service ecosystems. The proliferation of report silos, multiple BI tools, report sprawl from self-service BI, and the compounding pool of no-longer-used and unverified reports contributes to confusion, inefficiencies and suboptimal performance with operational analytics processes. Moreover, inconsistent business terms and KPI definitions hinder the ability to derive consistent, meaningful insights. in order to reap the benefits of governance, organizations require a comprehensive solution that can address these obstacles - not just technically, but also with respect to people and process issues. This is where ZenOptics software steps in to provide a holistic solution.

1. Identification of Existing Analytic Assets

The foundation of ZenOptics’ Analytics Hub is its ability to connect into various BI tools, applications, and storage systems in order to centralize analytics assets in a unified BI portal and analytics catalog where individuals can easily discover and access the information they desire. By providing a centralized analytics catalog of an enterprise’s analytic assets, search capabilities facilitate the quick discovery of information. Individuals no longer need to log into each BI tool, application, or storage system to locate the information that they are looking for, thereby saving time and effort. Even greater value comes from the fact that visibility across tools (and the assets in each) can preemptively thwart the creation of redundant analytic assets and reduce the report sprawl that so often occurs.

2. Consistent Business Terms and KPI Definitions

Through ZenOptics, a standardized business glossary is automatically derived from the analytic assets cataloged and managed. This drives consistent understanding and interpretation of KPI definitions across the entire organization. For example, the definitions of income, revenue, and sales are provided in a centralized manner so that everyone in the organization can understand the meaning and differences of each business term and KPI. By eliminating confusion and ambiguity, common understanding is supported, collaboration is enhanced, and confident decision making is fostered.

3. Security and Usage Monitoring

ZenOptics inherits the authorizations and permissions that an organization has established within its underlying source systems so that it is not necessary to create and maintain another cumbersome security layer. ZenOptics also provides administrator views of BI tools’ report usage history such that popular reports as well as unused reports are promptly identified. With this information, unused reports can be retired and popular reports can be reviewed to ensure quality compliance requirements associated with analytics governance standards.

4. Analytics Quality Management

Ensuring the quality of analytics is paramount for reliable decision making. ZenOptics provides a powerful analytics quality management capability through its certification process. The process assigns stewards to review and sign off on the analytic asset according to a standardized certification checklist. The asset can then achieve a certification status, which informs individuals that the report, dashboard, or visualization has been reviewed for usability. This empowers the organization to maintain high-quality analytic assets, providing a solid foundation for making informed decisions based on accurate information.

5. Compliance and Audit

ZenOptics simplifies compliance efforts by offering robust features such as analytics metadata, data source identification, and report/analytics certification processes. These capabilities support accountability for regulatory and audit requirements – including the analytic asset and the source of information for the asset.

Conclusion

Analytics governance plays a pivotal role in driving an organization’s success. ZenOptics software has emerged as a fulcrum, enabling its customers to reclaim control over their analytics initiatives. By centralizing governance processes, ensuring analytics integrity, and promoting transparency, ZenOptics empowers individuals to make timely and confident information-driven decisions.

Published November 14, 2023
About The Author

Jonathan Wu has more than 30 years of experience in the field of Data and Analytics, which began with defining the reporting requirements for developing a multi-currency portfolio fund accounting system at Wells Fargo Nikko Investment Advisors in the mid-1990s. He has practical experience designing, developing and implementing data and analytics solutions at organizations such as Silicon Graphics (acquired by HPE), Visa, Pfizer, and the State of Hawaii Department of Health. Jonathan has held various executive leadership positions with several leading Data and Analytics companies beginning with the co-founding of BASE Consulting Group in 1994. In 2003, BASE merged with Knightsbridge Solutions and was subsequently acquired in 2006 by Hewlett-Packard to establish their Information Management Practice. In 2007, he joined Sand Hill Angels (SHA), a group of Silicon Valley executives and accredited investors that are passionate about entrepreneurialism and the commercialization of disruptive new technologies through startup companies. In 2016, Jonathan was elected Chairman and CEO of Diyotta, a pioneer of serverless data integration technology in the cloud and a SHA portfolio company, which was acquired by ThoughtSpot. He is currently the COO for ZenOptics, a SHA portfolio company. In addition to his primary work activities, Jonathan served as a Business Intelligence columnist for DM Review and Information Management magazine for many years, and a faculty member of TDWI/Transforming Data With Intelligence, Santa Clara University and the University of California, Berkeley Extension.

Get In Touch Send Email

Related Posts

Category: Blog Author: ZenOptics
Navigating Organizational Change with Continuity: Insights from Stephen Dine and Saurbh Khera
Read Blog
Category: Blog Author: Saurbh Khera
Navigating Report Chaos: Challenges and Solutions for Modern BI
Read Blog